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Transition-metal-catalyzed olefin hydroarylation has become an
important strategy for alkylarene synthesis.* These atom-economic
processes have been shown to proceed through aromatic C—H bond
activation and subsequent olefin insertion.? Such a metal-mediated
pathway is distinct from the conventional Friedel —Crafts mecha-
nism and can promote anti-Markovnikov selectivity.® Recent
advancements in catalytic C—H activation with or without neigh-
boring directing groups® have led to significant progress in olefin
hydroarylation with electron-neutral or electron-rich arenes and
heteroarenes.*>*° However, reports on undirected olefin hydroary-
lation with electron-deficient arenes are rare.® Nakao and Hiyama
have recently reported Ni-catalyzed couplings of pentafluorobenzene
(1a) with 2-vinylnaphthalene or buta-1,3-dienylbenzene to afford
Markovnikov hydroarylation products.” More recently, Y u and co-
workers reported a Pd(I1)-catalyzed direct alkenylation of electron-
poor arenes that proceeds with highly unusual meta-selectivities
and indirectly generates hydroarylation products upon further
hydrogenation.?° Herein, we report the first example of undirected
olefin hydroarylation with electron-deficient perfluoroarenes. This
Rh(l) catalysis proceeds with good catalyst efficiency and useful
functional group tolerance. The current catalyst system is operation-
ally smple and can be easily adjusted to selectively generate
alkylation (hydroarylation) or olefination (oxidative arylation)
products.

We have previously reported a Rh(l)-catalyzed decarboxylative
conjugate addition with polyfluorinated benzoic acids in a partially
agueous solvent system.® This method provides arare example of
catalytic conjugate addition by polyfluoroaryl nucleophiles.***2
Prompted by this study and by the recent progressin perfluoroarene
C—H functionalization,”*** we aimed to develop a Rh(l)-catalyzed
hydroarylation process with a proposed catalytic cycle as described
below (Scheme 1):** Aromatic C—H activation of a perfluoroarene
substrate (1) generates a perfluoroarylrhodium(l) intermediate (A).
Subsequent insertion with an activated olefin substrate (2) forms a
Rh(l) enolate (B),*> which releases the desired hydroarylation
product (3) upon protonation. By including H,O in the solvent
system, hydrolysis of B can be promoted over 5-H elimination to
inhibit the formation of oxidative arylation product 4.2 Mean-
while, aRh(I) hydroxide (C) will be formed, which undergoes C—H
activation with 1 and completes the proposed catalytic cycle.*”*®
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We began our study with Rh(l)-catalyzed reactions between
pentafluorobenzene (1a) and n-butyl acrylate (2a). An extensive
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survey of reaction conditions led to an optimized catalyst system
of 1.5 mol % [(cod)Rh(OH)],, 3.3 mol % DPPBenzene ligand,*®
and a mixed solvent of 10% H,O/dioxane. Under these conditions,
a 1.4:1 mixture of la and 2a was heated at 120 °C for 24 h to
generate the anti-Markovnikov hydroarylation product n-butyl
3-pentafluoro-phenylpropionate (3a) in high yield and high selectiv-
ity over the oxidative arylation product 4a®° (93% combined yield,
17:1 selectivity of 3a/d4a). The overal reactivity and 3a/da
selectivity were highly dependent on the conditions of phosphine
ligand, reaction media, and the ratio of 1a/2a (see Table S1 in the
Supporting Information for details). In particular, removing water
cosolvent led to slower reactions and reversed selectivities favoring
oxidative arylation.?* Thus, selective formation of 4a could be
optimized using cis-DPPEthylene ligand,?® anhydrous dioxane
solvent, and a 1:4 ratio of 1a/2a. This direct alkenylation process
consumes excess 2a as a sacrificial hydrogen acceptor,4°16
providing a useful aternative to a recently reported Pd-based
catalysis using excess Ag,COs as the oxidant.®

Table 1. Rh(l)-Catalyzed Hydroarylation with Perfluoroarenes®
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@ Conditions: 1 (0.70 mmol, 1.4 equiv), 2 (0.50 mmol, 1.0 equiv),
[(cod)Rh(OH)], (0.015 equiv), DPPBenzene (0.033 equiv), dioxane/H,O
(1.5/0.15 mL), 120 °C, 24 h; average isolated yields from two runs,
ratio of 3:4 in parentheses. P GC yield of diakylation product in
parentheses; other byproducts detected in <5% yields. © 10 equiv of 1
was used in reaction. 9 GC yield. © Containing 2—4% byproduct 4.

Under the optimized conditions for hydroarylation, 1a was
effectively coupled with various acryl estersin high yields and high
selectivities over oxidative arylation (Table 1, products 3a—f). The
relatively mild conditions and the absence of base additives allowed
selective hydroarylation for a hydroxy-functionalized acryl ester
without dehydrogenation or hydroalkoxylation (3€),%* providing a
useful handle for further transformations. Acrylamide and N,N-
dimethylacrylamide gave hydroarylation products in high selectivi-
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ties but moderate yields (3g, 3h). In contrast, o,(-unsaturated
ketones reacted smoothly with la in good yields and >50:1
selectivities (3i, 3j). No reaction occurred with less reactive olefins
such as 2-cyclohexenone, styrene, or 1-hexene, and further catalyst
development is needed to address this limitation.

Various perfluoroarenes in addition to 1a also reacted with 2a
to form hydroarylation products in good selectivities (Table 1,
3k—t). Lower reactivity was displayed by substrates with less fluoro
substituents (3p, 3r —t) or with electron-donating para-substituents
(3I—n). A para-aniline derivative (3n) could be generated in 40%
yield without N-protection, but the analogous para-phenol substrate
was unreactive. When multiple aromatic C—H bonds were available,
a mixture of mono- and dialkylation products was formed, with
monoalkylated arene being the major product (3p—r). The low
reactivity of 1,3,5-trifluorobenzene required a 10:1 ratio of arene/
olefin to generate the monoalkylation product in 78% yield (3s).
Notably, 1,3-difluorobenzene reacted exclusively at the 2-position,
albeit with very low reactivity (3t). These substituent effects
supported arate-limiting arene C—H activation step, which appeared
to be assisted by ortho-F substituents and by the overall electron
deficiency of the aromatic system.2*2®> A concerted C—H activation
pathway, such as internal electrophilic substitution (IES),*® islikely
involved, although other possibilities' " cannot be excluded without
further mechanistic investigation.

Table 2. Examples of Oxidative Arylation with Perfluoroarenes®
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@ Conditions: 1 (0.50 mmol, 1.0 equiv), 2 (2.0 mmol, 4.0 equiv),
[(cod)Rh(OH)]» (0.015 equiv), cis-DPPethylene (0.033 equiv), dioxane
(1.5 mL), 120 °C, 24 h; E-isomers only; average isolated yields from
two runs; ratio of 4:3 in parentheses.” DPPBenzene ligand (0.033 equiv)
and 6.0 equiv of 2a were used.® 14% of diakenylation product was also
detected; total yield of other byproducts <5%.° Containing 4—8%
byproduct 3; further purification attempts were not successful.

Examples of oxidative arylation were provided in Table 2 to
evaluate its utility as a ssmple protocol for perfluoroarene akeny-
lation.® 1a reacted with various acryl estersto give the desired olefin
products in good yields and good selectivities (4a—e). Several other
perfluoroarenes also reacted with 2a to selectively form the
oxidative arylation products in moderate to good yields (4f—j).
However, the reactivity and functional group tolerance were
generally lower than those for the corresponding hydroarylation,?®
and DPPBenzene ligand was used in place of cis-DPPEthylene to
improve the yields with less reactive perfluorarenes (4h—j). Due
to the higher olefin/arene ratios needed for selective oxidative
arylation, dialkenylation became more competitive and could take
over as the major process (e.g., 4j, 4j").

In summary, we have developed a Rh(l)-based catalyst system
for the effective couplings between perfluoroarenes and o,f-
unsaturated carbonyl derivatives. Selective formation of hydroary-
lation and oxidative arylation products was achieved via a proposed
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tandem sequence of C—H activation and competitive conjugate
addition vs Heck—Mizoroki olefination. Current efforts are focused
on mechanism studies and further catalyst development for broader
synthetic applications.
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